Carbon Sequestration as a Function of Intercropping Management Practice and Different Nitrogenous Fertilizer Types

Khadra A. Abbady ${ }^{*}$; Enshrah I. M. El-Maaz ${ }^{*}$; Hoda M. R. M. Ahmed ${ }^{*}$ and A. A. Zohry**

* Soils, Water and Environment Res. Instit. Agric. Res. Center.
**Field Crops Res. Instit. Agric. Res. Center.

Abstract

This study has been carried out through an experiment conducted at El-Giza Agricultural Research Station to examine the short-term effects (3 years) of two cropping patterns-based on intercropping system and N fertilization on quantifying of crop \& soil carbon sequestration and soil carbon dioxide emissions targeting to test the ability of this management to mitigate global warming which produced from increased concentration of atmospheric CO_{2} which would essentially reflect upon climate change mitigation.Also, the impact of soil temperature and moisture changes as factors affected such emissions have put into consideration. The first intercropping pattern has been sunflower/cowpea (Helianthusannuus, va.Sakha, 53/Vigna unguiculata. local).Second intercropping pattern has been wheat/peas (Triticum aestivum L va, Sakha 94/Pisum sativum Lva, Master b.).The first intercropping pattern has been arranged in 2:2,2:3 rows of sunflower: cowpea, sole sunflower and sole cowpea (4 configurations) while the $3: 2,5: 2$ rows of wheat: peas , sole peas and sole wheat (4 configurations) have been done for the second pattern. The N -fertilizers have been urea and ureaform (slow release nitrogen fertilizer); in rate of $60 \mathrm{~kg}_{\mathrm{N}} \mathrm{Ned}^{-1}$ for sunflower/cowpea intercrop, $110 \mathrm{~kg} \mathrm{~N} \mathrm{fed}^{-1}$ for wheat/peas intercrop, 30 kg N fed ${ }^{-1}$ forsole sunflower and $30 \mathrm{~kg}_{\mathrm{N}}$ fed ${ }^{-1}$ for sole cowpea from urea added for every season. $100 \mathrm{~kg} \mathrm{~N}_{\mathrm{Ned}}{ }^{-1}$ for sunflower/cowpea intercrop, 50 kgN fed ${ }^{-1}$ for sole sunflower and $50 \mathrm{kgN} \mathrm{fed}^{-1}$ for sole cowpea from ureaform added for every two seasons. Wheat/peas intercrop; sole wheat and sole peas (in second season) have not been taken N -fertilizer but grown on the residual ureaform- N . Soil CO_{2} emissions have been weekly measured from October $3^{\text {rd }}, 2010$ to May $9^{\text {th }}, 2013$, us ingstatic chamber technique. Such emissions have been absorbed through NaOH followed by HCl titration. Also, soil temperature and moisture have been weekly recorded. Soil sampling after harvest has been taken to determine some physical and chemical properties. After three years of practicing this management, the results indicate that, under the conditions of this experiment, soil temperature varied between 12and $45 \mathrm{C}^{\circ}$ at 5 cm depth, soil moisture varied between 2 and 55% at the same depth. Statistically, they have shown no or poor correlations with soil emitted-CO ${ }_{2}$.The quantities of soil- CO_{2} emitted from irrigated plot treatments and determined in summer seasons have been higher than those of non-irrigated ones and those determined in winter seasons. Intercrops patterns and UF fertilizer have been contributed to obtain a lower emitted CO_{2} quantities from soil compared to sole crops patterns and urea fertilizer. The obtained yield from intercrops patterns treatments and UF fertilizer have been higher than those of sole crops patterns ones and urea fertilizer. Intercrops patterns and UF fertilizer have been found to be efficient in increasing sequestered carbon either in crop biomass or in soil; the crop sequestered-C relative increase for intercrops to sole crops values have seasonally varied between 42.06 and 77.75% for sunflower /cowpea intercrops and between -12.01 and 0.46% for wheat/peas ones. The crop sequestered-C relative increase for UF to urea values have varied between 6.78 and 10.51% under sunflower/cowpea intercrops and between 14.60 and 30.05% under wheat/ peas ones. ..Regarding soil sequestered carbon over 3 years ,sequestered-C relative increase for intercrops to sole crops has amounted 5.83% and for UF to urea amounted 47.08%. The marked gradual improvement in soil organic matter content, EC, pH, BD, available-N, stable aggregates\% and porosity have positively reflected on changes in the soil sequestered carbon quantities.

Keywords: ureaform; slow release fertilizer; urea; intercrops; sole crop; emitted CO_{2}; sequestered-carbon.

INTRODUCTION

To mitigate global warming, carbon sequestration strategy (The process of removing carbon from the atmosphere and depositing it in a reservoir) may be the reliable key to achieve it. Soil is an ideal reservoir for storage of organic carbon (OC) (Flach et al., 1997; Paustian et al., 1997a, 1997b; Lal et al, 1998; Bruce et al.,1999; Sperow et al., 2003). The soil C pool naturally comprises soil organic C estimated at 1550 Pg (1 peta gram $=10^{15} \mathrm{~g}=1$ billion ton) and soil inorganic C approximates 750 Pg both to 1 m depth. This total soil C pool of 2300 Pg is three times the atmospheric pool of 770 Pg and 3.8 times the vegetation pool of 610 Pg (Batjes, 1996). Then soil organic C pool has a great potential to store sequestered C. However soil organic C was usually prone to depleting due to land misuse and inappropriate management for the long history (Qingren Wang et al., 2010).In this respect, Intergovernmental Panel on Climate Change (1995) documented estimates that globally agriculture emits about 20% of all emittedcarbon dioxide. Alvarez et al.(1998) reported that increased agricultural intensification and the adoption of sole crop production systems in the Argentine Pampa during the past 40 years reduced levels of soil organic matter up to 50%.Lal (2000)stated that most croplands lost $30-40 \mathrm{Mg} \mathrm{Cha}{ }^{-1}$ and most degraded soils lost 40-60 Mg C ha $^{-1}$.Lal(2001)calculated a reduction in soil C pool by 1 Pg is equivalent to an atmospheric enrichment of CO_{2} by 0.47 ppm . On the other hand, Tans et al.,(1990) calculated the potentiality for increasing C as CO_{2} storage into soils and found that it equals $1.3-2.4$ 10^{9} metric tons of carbon year ${ }^{-1}$. Lal (2004) determined that much of the historic C loss (about $66-90 \mathrm{Pg}$ C) from the soil can be restored via C sequestration in 25-50
years with appropriate land management. Soil C sequestration studies in the crop land of major countries showed that the cropland can sequester about $75-208 \mathrm{Tg}$ $\mathrm{C} \mathrm{yr}^{-1}$ in US, $24 \mathrm{Tg}^{\mathrm{C}} \mathrm{yr}^{-1}$ in Canada, $90-120 \mathrm{Tg} \mathrm{C} \mathrm{yr}^{-1}$ in the European Union, $105-198 \mathrm{Tg} \mathrm{C} \mathrm{yr}^{-1}$ in China and $39-49 \mathrm{Tg} \mathrm{C} \mathrm{yr}^{-1}$ in India (1 Tera gram= $10^{12} \mathrm{~g}$) (Hutchinson et al., 2007). Smith and Falloon(2005) reported that the potentiality for carbon storage in European cropland is about $90-120 \mathrm{Tg}$ Cyear $^{-1}$. Estimation of C sequestration potential on crop land under corn in the Piketon County, Ohio, USA was $8.53 \pm 0.2 \mathrm{Mg} \mathrm{ha}^{-1}$ (Adhikariet al., 2013).

To optimize the efficiency of C sequestration in agriculture sector, cropping systems such as crop rotation, intercropping, cover cropping, etc., play a critical role by influencing optimal yield, total increased C sequestered with biomass and that remained in the soil (Kimbleetal.1998; Qingren Wang et al., 2010; Smith et al., 2000; West and Post, 2002 and Lal, 2004). Intercropping system is one of the most powerful tools to pull carbon from the atmosphere and sequester it in the soil for long-term storage because it is able to utilize sunlight with an adequate spatial distribution of various plant architectures and produce greater biomass either above or below-ground per unit area than single crops as a result of complementarities in resource use and facilitation between component crops (Kong et al.,2005).Intercropping means growing of two or more crops simultaneously on the same area of land with a definite row pattern and is predominant in the regions of dry, humid and semi-arid tropics(Sharma and Behera, 2009).Currently, it is also recognized in temperate areas (Hauggaard- Nielsenet al.,2001).Although little is known about C sequestered in intercropping practices, recently some studies conformed it. Mungai and

Motavalli (2006) observed that legume-based inter cropping systems significantly increased the retention of C in the soil. Makumba (2007) found that sequestered C in gliricidia-maize intercropping system varied between 123 and $149 \mathrm{Mg} \mathrm{C} \mathrm{ha}^{-1}$ and was 1.6 times more than in sole-maize. Fang et al.(2010) stated that sequestered C reached 16.7 ton C ha ${ }^{-1}$ for the poplar-wheat-soybean intercropping system and 18.9 ton C ha ${ }^{1}$ for the poplar wheat-corn one.

Soil Sequestration is a complex process that is influenced by many factors, such as soil temperature \& moisture and nitrogen fertilization. As regard temperature effect, Kirschbaum(1995)pointed out that the potential increase in CO_{2} release from the soil caused by future elevated temperature may have a positive feedback effect on the atmospheric CO_{2} and global change. Besides temperature and moisture effects on soil or ecosystem respiration (soil CO_{2} emissions) are acted simultaneously; Fang and Moncrieff (2001); Xu and Qi (2001); Reichstein et al., (2002); Qi et al.,(2002); Janssens and Pilegaard (2003) reviewed, described and revealed that the dependence of soil respiration rate may be varied as the variation in moisture and temperature changes and the interaction extent between each other.

As for nitrogen fertilization, Wang and Bakken (1997) found that the addition of mineral N-fertilizer might not only increase plant biomass production but also microbial biomass and microbial activity. The latter effect could enhance the decay of soil organic matter. FAO (2004)point out to some studies in Argentina, India, Kenya and Nigeria which illustrated that inorganic fertilizer used alone to increase nutrient supply for crops results in declines in soil C in all systems. This hypothesis has recently been supported by the study of Khan et al.,(2007) who showed that high mineral fertilization (NPK) led to significant losses of soil organic carbon during 51years of continuous maize cropping at the Morrow plots (Illinois, USA).

The applied nitrogen fertilizers in this study are urea as soluble form and ureaform (UF) as slow release fertilizer. The first one is a known fertilizer with several problems; N -volatilization, N -leaching, N -pollution and low fertilization efficiency. The second one is a condensed urea molecules product as a result of reaction between urea and formaldehyde consisting of short chains from methylene-di urea to tetra methylene-penta urea and synthesized by Abbady et al.,(1992).Alexander and Helm (2007) reviewed several trial results with UF products showing the beneficial effects of the particular kind of slow release nitrogen fertilizer in meeting needs for improved fertility management and reduced N pollution for agro-ecosystem. Abbady et al.,(1997), Hegazy et al.,(1998), Abbady et al.,(2003),Abbady et al.,(2008) and Abd El-Aal et al.,(2008)reported that application of UF led to increase yield with 10-30\%.

Because of enhancing energy consumption efficiency is a one of the tools used to sequester or lower CO_{2} emissions to atmosphere, more recent studies of Abbady et al.,(2011)and Abbady et al.,(2013) paid attention to the importance of UF as slow release N-fertilizer application in enhancing such efficiency and lowering CO_{2} emissions produced indirectly from using urea or other conventional N -fertilizers.

The objective of this study is to determine the effect of intercropping system practice and N fertilization on crop productivity, soil \&crop carbon sequestration and soil CO_{2} emissions.

MATERIALS AND METHODS

The experiment has been conducted at EL-Giza Agricultural Research Station.The soil of study site has been classified as Typic Haplotorrerts, fine, hyperthermic, according to USDA, 2006. Some chemical and physical properties have been recorded in Table (1).The experiment has been initiated during the summer season of three consecutive years (2010-2013) with sunflower/cowpea (Helianthus annuus
L.va.Sakha,53 /Vigna unguiculata L.va.local) intercrops as summer pattern which has been followed by wheat/peas (Triticum aestivum L va, Sakha 94 /Pisumsativum L.va,Masterb) intercrops as winter pattern. Those two patterns have alternatively frequented for three consecutive years to study the impact of such intercropping practice and N fertilization on soil CO_{2} emissions, soil and crop carbon sequestration , soil properties and crop productivity targeting to contribute in mitigating the atmospheric CO_{2} level reaching mitigate climate change.

The experiment has been consisted of 8treatments arranging with three replications in split plot design:(a) the treatments of main plots have represented the four configurations of sunflower/ cowpea intercrops as summer crops and four configurations of wheat/peas intercrops as winter crops. In addition, tow plot treatments, one of them has been leaved in dry case and the other has been irrigated as same in the experiment irrigation to determine the soil emitted- CO_{2} in these cases.
The treatments(configurations)for sunflower/cowpea inter crops have come as follows:

1- $2: 2$ rows sunflower/cowpea
2- $2: 3$ rows sunflower/cowpea
3- 0.0: 4 rows sunflower /cowpea (sole cowpea)
4- 2:0.0 rows sunflower /cowpea (sole sunflower)
The treatments (configurations) for wheat/peas intercrops have come as follows:

1-3: 2 rows wheat /peas

2- 5:2 rows wheat /peas
3- $0.0: 2$ rows wheat /peas (sole peas)
4-6: 0.0 rows wheat /peas (sole wheat)
The summer and winter intercrops patterns have been alternatively planted in the same plots for consecutive 3 years.(b) the treatments of sub-plots have represented the two types of N fertilizers; urea as an ordinary fertilizer(46.5 N) and ureaform ($40 \% \mathrm{~N}$) as a slow release fertilizer. The rate of $60 \mathrm{~kg} \mathrm{Nfed}^{-1}$ for sunflower/cowpea intercrops, $110 \mathrm{~kg}_{1} \mathrm{Nfed}^{-}$ ${ }^{1}$ forwheat/peas intercrops,30 $\mathrm{kg} \mathrm{Nfed}^{-\mathrm{P}}$ for sole sunflower, $30 \mathrm{~kg} \mathrm{Nfed}^{-1}$ for sole cowpea, $40 \mathrm{~kg} \mathrm{Nfed}^{-1}$ for sole peas and $70 \mathrm{~kg} \mathrm{Nfed}^{-1}$ for sole wheat taken from urea which have been added for every growth season.100 $\mathrm{kg} \mathrm{Nfed}^{-1}$ for first pattern, $50 \mathrm{~kg} \mathrm{Nfed}^{-1}$ for sole sunflower and $50 \mathrm{~kg} \mathrm{Nfed}^{-1}$ for sole cowpea taken from UF and added for every 2 growth seasons .Wheat/peas intercrop, sole wheat and sole peas jn second season have not been taken N-fertilizer but grown on the residual ureaform-N. The experimental work has been managed adopting the permanent raised bed planting with reduced tillage (only hand weeding) in order to minimize disturbance of soil particles For sunflower /cowpea intercrops pattern; sunflower has been planted on all sides of120 cm wide and 20 cm high beds with planting one plant hill ${ }^{-1}, 25 \mathrm{~cm}$ apart and cowpea has been planted on the top of the beds in 2, 3and 4 rows. Wheat/peas intercrops pattern has been planted on the same plots of prior intercrops. the wheat has been planted on the top of the beds in 3,5 and 6 rows, the peas has been planted on all sides of beds. The distance between every tow beds has been 25 cm . On all crops in each treatment, recommended phosphorus and potassium fertilizers have been received. Plant samples have been taken from each plot at harvesting stage to determine the yield weight of both intercrops patterns and sole crops.

Soil CO_{2} emissions have been measured during the 6 growing seasons of the three successive years, taking into consideration that all different agriculture operations have been carried out during the measurements and also some precipitations has been fallen. The measurement of CO_{2} emissions have been based on the static chamber technique(Zibilske,1994) in which an increasing CO_{2} concentration with time has been expected and referring for gas diffused from profile layers .In this technique, at the soil surface of each plot and between the rows, the transparent polyethylene plastic chamber (37 x 30 x 20 cm
distances) has been placed and inserted for depth of nearly 7.0 cm (without any plant under it).In each chamber, 1 N NaOH solution trap $\left(400 \mathrm{~cm}^{3}\right)$ has been placed. Also, centigrade thermometers to measure temperature degrees at 5 cm depth of soil surface (submerged in mud-filled glass beakers) and jars filled with water to conserve moisture level have been placed inside the chambers. The alkali traps have been changed after 7 days of starting chamber close. This work has been continued for every chamber along with every growth seas on (i.e the measurements have been carried out for every week) and taken to analysis in Lab. Also, the weekly averaged-readings of temperature (3 readings) have been recorded to know the warming case of chamber ambient as well as surface soil samples have been taken to determine soil moister content at the same time of alkali traps changing. The emitted CO_{2} has been absorbed by NaOH . Reacted alkali in the NaOH traps with CO_{2} emitted from soil forming $\mathrm{Na}_{2} \mathrm{CO}_{3}$ has been reacted chemically with added $1 \mathrm{~N} \mathrm{BaCl}_{2}$ solution. Back-titration with 1 N HCl and in existing of phenolphthalein as an indicator to determine the unreacted NaOH has been done(Anderson et al.,1982).Then, the emitted- CO_{2} equivalents have been calculated by subtracting the equivalents of HCl used in back-titration(equivalents of unreacted NaOH) from equivalents of used total NaOH . Soil CO_{2} emissions, soil temperature and soil moisture have been recorded weekly from October $3^{\text {rd }}, 2010$ to May9 ${ }^{\text {th }}$, 2013.Measurements have been uniformly recorded at nearly hour of 12-12.30am.Cumulative CO_{2} emissions for each season of 6 successive seasons have been calculated using the following relationship:
CO_{2} kgfed $^{-1}$ season $^{-1}=\sum_{\mathrm{i}=\text { first }}^{\mathrm{n}=\text { 1. }} \mathrm{Xi}+\mathrm{Xi}+1+\mathrm{Xi}+2+\ldots \mathrm{Xi}+\mathrm{n}$ where (i) is first week of the first growing season when first CO_{2} measurement has been taken, (n)is the last week of the last growing season when last CO_{2}
measurement has been taken, (X) is CO_{2} measurement $\left(\mathrm{kg} \mathrm{fed}^{-1}\right.$ week ${ }^{-1}$). The yield of each crop has been recorded every growing season. Before planting, soil samples from the surface layer (0-30) have been taken from the experiment site, air-dried, ground, sieved through a 2 mm sieve and analyzed for some physical and chemical properties as recorded in Table 1. After harvest, soil samples have been collected from the surface layers and sub-surface layers at soil depths of 0 $-10,10-30$ and $30-60 \mathrm{~cm}$. for all plots within the studied six seasons. The soil samples have been divided into two parts. The first part has been leaved as it is (undisturbed) and used to determine the soil aggregate size distribution and total soil porosity. The second one has been air-dried, ground to pass through a 2 mm sieve and kept for the chemical determinations. Soil pH and organic matter have been determined according to the methods described by Page et al.,(1982).The total soluble salts (EC) has been determined in soil paste extract as dSm^{-1} (Jackson, 1973). The content of available nitrogen in soil has been determined according to the method described by Cottenie et al., 1982.Particle size distribution has been carried out by the pipette method described by Gee and Bauder,(1986).Soil bulk density (BD)has been determined using the un disturbed soil column and total soil porosity has been calculated as percentage from the obtained values of soil real and bulk densities according to Richards(1954). Distribution of dry aggregates has been determined according to the methods of Richards (1954).Water stable aggregates have been determined using the wet sieving technique described by Yoder (1936) and modified by Ibrahim (1964). All data have been averaged to generate mean values to facilitate their display in graphical diagrams. Statistical analysis has been carried out according to the procedures outlined by Snedecor and Cochran (1980).

Table (1): S ome Physical and Chemical Characteristics of the studied soil

Depth cm	Cations Me ${ }^{\text {-1 }}$				Anions Me L^{-1}			$\underset{\mathbf{m g k g}^{-1}}{\mathbf{N}}$	$\underset{\%}{\text { O.M }}$	$\begin{gathered} \mathrm{EC} \\ \mathrm{dSm} \end{gathered}$	Particle size distribution				
	\mathbf{K}^{+}	Na^{+}	$\mathbf{M g}{ }^{++}$	Ca^{++}	So ${ }^{-4}$	Cl^{-}	HCO^{-3}				$\begin{gathered} \text { pH } \\ \text { 1:2:5 } \end{gathered}$	$\begin{gathered} \text { Sand } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Silt } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Clay } \\ \% \\ \hline \end{gathered}$	Texture
0-10	0.32	4.75	3.50	2.50	4.07	6.50	0.50	55.50	2.10	1.11	7.11	7.50	37.00	55.50	Clay
10-30	0.36	5.60	3.50	3.00	4.46	7.50	0.50	53.50	1.80	1.25	7.30	6.75	35.75	58.50	Clay
30-60	0.32	5.25	3.50	3.00	4.07	7.50	0.50	53.60	1.77	1.21	7.11	5.50	36.50	59.00	Clay

RESULTS AND DISCUSSION

Carbon exists in many forms and is the major building block for life on Earth. It is found indifferent terrestrial ecosystems. One of most important of them is agro-ecosystem, where the carbon is predominantly as plant biomass, as soil organic matter, and as the carbon dioxide gas (CO_{2}). The discussion of this study will allocate its situation in every one of the above sections and demonstrate how to sequester it in soil or in plant biomass influencing by the experimental work of the suggested management practices targeting to reduce the level of carbon that occurs in the atmosphere as CO_{2} and to reduce the release of CO_{2} to the atmosphere from agricultural soil and subsequently mitigate global warming.

1. Soil carbon dioxide $\left(\mathrm{CO}_{2}\right)$ emissions:

1.1. Under dry and wet condition.

Fig.(1) show the results of soil- CO_{2} emissions released from non-irrigated $\left(0_{1}\right)$ and irrigated $\left(0_{2}\right)$ plot treatments-both have been uncultivated and unfertilizedwhich have been carried out for 6 successive seasons. Clearly, emitted- CO_{2} quantities from soil have been varied influencing by variations between environmental conditions of summer and winter growth seasons and also between the non-irrigated and irrigated treatments. These quantities have been higher in summer seasons and irrigated-plot treatment than those of winter seasons and non-irrigated-one. Also, it is observed on all the studied seasons that there is fluctuation status for CO_{2} values related to time intervals at which the measurements have been taken. Since such treatments
have not been cultivated or fertilized, the unique effect in either seasonal variation or irrigation status has probably been the change in temperature $\&$ moisture intensities and their frequencies that affect the decomposers of organic matter stock and also their propagation, in this connection, Xu, et al.,(2004)stated that soil respiration (emitted CO_{2}) is low in dry conditions and increases to a maximum at intermediate moisture levels until it begins to decrease when moisture content excludes oxygen. Atkin et al.,(2000)reported that temperature will increase soil respiration exponentially to a maximum, at which point respiration will decrease to zero when enzymatic activity is interrupted.

From Table (2) it is generally illustrated that total amounts of emitted- CO_{2} from both non-irrigated and irrigated-treatment $\&$ its quantity in carbon form and calculated for every season either summer or winter have been somewhat high. It is also observed that the emitted- CO_{2} or $\mathrm{CO}_{2}-\mathrm{C}$ quantities from irrigatedtreatment have been higher than those of non-irrigated one where they have amounted (on averaged) 4.13ton $\mathrm{CO}_{2} \mathrm{fed}^{-1}\left(1.12\right.$ ton $\mathrm{CO}_{2}-\mathrm{C}$ fed $\left.{ }^{-1}\right)$ for former, and 3.63 tonCO 2_{2} fed $^{-1}\left(0.98\right.$ ton $\mathrm{CO}_{2}-$ Cfed $\left.^{-1}\right)$ for latter with percentage difference of 13.77%, the relatively high magnitude belonging to winter emitted CO_{2} may be attributed to the effect of some precipitation which have been fallen during such period on soil moister content and consequently on increase the emitted- CO_{2}, as well as there has been evident variation between summer and winter total measurements of CO_{2}, either under irrigated or non-irrigated plot treatments. For summer seasons, they have varied between $4.06\left(1.1 \mathrm{CO}_{2}-\mathrm{C}\right)$ and 5.13ton CO_{2} fed $^{-1}\left(1.39\right.$ tonCO $\left.2-\mathrm{Cfed}^{-1}\right)$ under irrigated treatment
and from 3.76(1.02 $\left.\mathrm{CO}_{2}-\mathrm{C}^{-}\right)$to 4.41ton CO_{2} fed- ${ }^{1}$ (1.19ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$) under non-irrigated one. For winter seasons, such values have varied between 3.08 $\left(0.83 \mathrm{CO}_{2}-\mathrm{C}\right.$) and 4.03 ton CO_{2} fed $^{-1}$ (1.09ton $\mathrm{CO}_{2}-$ Cfed^{-1}) under irrigated treatment and between $2.61(0.7$ $\mathrm{CO}_{2}-\mathrm{C}$) and 3.74 ton CO_{2} fed $^{-1}$ (1.01 tonCO $-\mathrm{Cfed}^{-1}$) under non-irrigated one. The percentage differences between the CO_{2} quantities have been emitted from soil for every season under non or irrigated treatments varied between 1.75 and 19.42%.Such values for all summers and all winters, on averaged, have been amounted 22.91 \% under irrigated treatment and 26.56 $\%$ under non-irrigated one, several studies have been somewhat in agreement with these results, for example, Hanson et al., 1993,. Here, it must be pointed out that the soil without any usage has released some emissions of CO_{2}. This result would be taken into consideration because these emissions play an important role in regulation of regional and global carbon cycle, and especially at its exploitation for agricultural or industrial

investments.
 1.2. Under different studied treatments.

The results of different treatments (urea, UF, T_{1}, T_{2}, T_{3} and T_{4}) effect on soil temperature (ST), soil water content (SWC) and CO_{2}-emitted from soil during carrying out the varied agriculture processes (fertilization, irrigation, wedding....etc) for 6 successive seasons as well as during taking place the plant growth and fallow times has been graphically recorded in Figs.(2,3 and 4). As for ST, it is observed from Figs. (2a, 3a and 4a) that in all summer seasons, there has been upward trend for ST degrees ranged from 27 to 45 C° while in all winter seasons, there has been downward trend for such degrees ranged from 34 to $12 \mathrm{c}^{\circ}$, the noticed simple fluctuation in recoded ST degrees may be attributed to heat loss resulting from evaporation after the irrigation and then taking place solar heating again and so on .It is also observed that on most studied seasons, no difference between ST degrees under urea or UF treatments has been occurred. Under intercrops patterns (T_{1} and T_{2}), the ST degrees have been few lower than those of sole crops (T_{3} and T_{4}). This may be confined in the insulation effect of surface soil referring to the intercropping system; as the intercrops grow and increase their foliage, the soil surface gets covered. Ghanbari et al.,(2010) observed reduction in ST in plots with maize-cowpea intercropping compared to those with sole maize stand. He explained this as due to the shading effect of two crops in the intercropping system

Figs.(2b, 3b and 4b) also, record the SMC results under different treatments which illustrated that: firstly, the soil moisture content in winter seasons has been greater than that of summer seasons where their levels have been ranged from 5 to 55% for former and from 2 to 32% for latter, such effect has been a reflection for variation of evaporation status in different seasonal climate. Secondly, the marked fluctuation in levels of SMC in all diagrams may be due to the case of wetness and dryness which always occurred after every time of irrigation or due to the depletion of moisture resulting from water absorbance by crops or water drainage and dryness of surface soil .Thirdly, levels of SMC under both UF and urea treatments has been approximately equated. Fourthly, no certain trend for the effect of intercrops or sole crops on SMC levels has been seen; such levels have sometimes been increased under T_{1} and T_{2} and sometimes under T_{3} and T_{4} and vice versa, this may be related to the effect of all gathered factors (wetness, dryness, shading and water absorbance...etc).

From Figs.($2 \mathrm{c}, 3 \mathrm{c}$ and 4 c), it is in general, illustrated that the curves of CO_{2} released under all treatments have taken a pattern of maximized or minimized CO_{2} values ,probably, influencing by different effective factors such as agriculture processes or others (pH, EC, aeration, clay,...etc) which appear to be more impact (amongst increase or decrease) on the mineralization capacity of the soil organic matter and CO_{2} release or the root respiration or the biological activity in this experiment, because no consistency
between the seasonal patterns of ST degrees or SMC and those of emitted- CO_{2} have been realized. It is observed an increasing CO_{2} released under almost treatments at the intermediate weeks of every season where this periods have related to maximum growth of crops either above or below ground, in another words, increasing growth, activity and respiration of the roots which may be varied accordingly, their type and nature. Also, in all studied seasons, CO_{2} emissions from urea treatment has been surpassed to those of UF one, which may be attributed to high availability of nitrogen in urea case and its effect on the decomposers of organic matter as well as CO_{2} emissions from T_{1} and T_{2} (intercrops) have sometimes been slightly higher than those of T_{3} and T_{4} (sole crops), this is expected due to the higher roots dense for former treatments comparatively to those of latter ones and its effect on their respiration. The most minimum amount of CO_{2} emitted (may lag period) has been only noticed in first weeks of first season of first year and some extent, after harvest (fallow period). In this section of discussion, it is obviously shown the effect of fertilization types, irrigation, varied density of roots systems of intercropping patterns and seasonal changes. Similar results have been obtained by several studies for example, Makumba et al.,(2007) , Iqbal et al.,(2008) and Ussiri and Lal (2009).

Correlation analysis has been undertaken between soil CO_{2} emissions and ST and SMC to determine the relationships between such emissions and each one for non-irrigated and irrigated plot treatments (Fig.5) and under different treatments (Figs.6, 7 and 8).

From Fig. (5), on all six studied growing seasons, it can be seen that there have been negative weak correlations or no correlation between CO_{2} emissions and each one of ST and SMC under non-irrigated or irrigated plot treatments, where R^{2} ranged from 0.001 to 0.282 for former and from 0.0002 to 0.2799 for latter. However, slight increase in R^{2} values belonging to ST of non-irrigated plot has been observed. The mixed results without limited trend for R^{2} of SMC have been obtained. It is appear that conflated effects for both ST and SMC have necessitated the soil biological system to give such results. These tendencies have been in accordance with findings of Xu et al., (2008). From Figs.(6,7 and 8), it is also found that for all studied seasons, no correlation or weak correlation between CO_{2} emissionsand ST under urea or UF treatment; R^{2} for former ranged from 0.003 to 0.40 and ranged from 0.002 to 0.05 for latter.

Under intercropping and sole crop patterns (on average); R^{2} have ranged from 0.004 to 0.3409 for former and ranged from 0.002 to 0.3664 for latter. These results have been in agreement with Huang et al., (2013). Obviously, poor dependence for soil CO_{2} emissions on soil temperature and moisture has been occurred. Apparently, the results of soil CO_{2} emissions have been affected by a very complex interaction of several factors and related to them more than soil temperature and moisture.

2. Crop production and crop carbon sequestration
 \subsection*{2.1Crop production}

The results in Table (3) show the effect of sunflower/cowpea intercropping system for 3 cultivating seasons and N -fertilizer treatments on crop yield and biomass carbon (biomass-C). There has been significant positive effect ($\mathrm{p}<0.05$) for intercropping configurations on sunflower stalks \& seeds yield, cowpea yield and total yield of both crops at the 3 cultivating seasons. Limited significant variation has been observed for N -fertilization on the same parameters. Non significant effect has been recorded for interaction between intercropping system configurations and N-fertilization on the previous mentioned parameters.

Because of plants act as a bridge to carrying the carbon from atmosphere where they use their primary function (photosynthesis) to produce plant biomass as a precursor soil organic carbon input, crop yield data have
been calculated as biomass-C (biomass-C ton fed ${ }^{-1}=$ crop yield in ton fed ${ }^{-1}$ x 0.58). Averaged seasonal biomass-C values have ranged from 13.06 to16.10ton C fed $^{-1}$ season ${ }^{-1}$ and amounted 41.78 ton $\mathrm{C}^{\text {fed }}{ }^{-1}$ as a total biomass-C for 3studied seasons. The significant effects
of intercropping systems, N - fertilization and interaction on biomass-C have taken the same directions of such effects on crop yield at the 3 cultivating seasons as well as on total crop yield and total biomass-C of 3 seasons.

Fig.(1): CO_{2} emissions released from soil under dry and wet conditions for $\mathbf{6}$ seasons of $\mathbf{3}$ successive years
Table (2): Total soil CO_{2} emissions and its quantity in carbon form (tonfed ${ }^{-1}$) of 6successiveseasons for non-irrigated and irrigated plot treatments
Treatment
plot

Taking the averaged biomass-C values influenced by intercrops $\left(\mathrm{T}_{1} \& \mathrm{~T}_{2}\right)$ and sole crops $\left(\mathrm{T}_{3} \& \mathrm{~T}_{4}\right)$, it is demonstrated that averaged value of former has been obviously superior to those of latter where the averaged-values of intercrops have ranged from 16.07 to 18.63 tonCfed $^{-1}$ season ${ }^{-1}$ while they have ranged from 9.71 to 13.57 ton Cfed^{-} ${ }^{1}$ season ${ }^{-1}$ for sole crops over the studied 3seasons. The total biomass-Quantities of averaged-value for intercrops have amounted 11.53 ton Cfed^{-1} and amounted 7.72ton Cfed^{-1} for sole crops pattern. The values of biomass-C relative increase for intercrops to sole crops have ranged from 37.29 to 68.88% over the studied 3 seasons and it has amounted 51.77% at total biomass-C for 3studied seasons.

Data presented in the same Table show reasonable superiority for the averaged biomass-C values referring to UF fertilizer to those of urea fertilizer. These values for former have ranged from13.28 to16.66 ton Cfed ${ }^{-1}$ season ${ }^{1}$ and ranged from 12.82 to 15.54 ton Cfed^{-1} season ${ }^{-1}$ for latter over the 3studied seasons. The total quantity of averaged-biomass-C value of UF fertilizer has amounted 42.13 ton Cfed^{-1}. Such value for urea fertilizer has amounted 40.56 ton Cfed $^{-1}$. Also, biomass-C relative increase values for UF to urea have ranged from 3.59 to 7.23%.It has amounted 3.86% as a total of averaged-values for 3 studied seasons. Most works that deal with intercrops \&sole crops patterns have recorded clear superior crop biomass for former to latter, for example , Natarajan and Willey(1986),Ajeigbe et al.,(2008) and Latati et al.,(2013).Also, several studies confirmed on the superiority of crops yield fertilized with UF to those fertilized with urea, for example, Abbady et al.,(2011) and Abbady et al.,(2013).

From Table (4), it can observed that the effect of wheat / peas intercropping system for 3cultivating seasons and N -fertilizer treatments on crop yield and biomass-C values has been markedly lower than that of previous mentioned intercrops pattern (Table 3).There has however been clear significant difference for intercropping configurations on wheat, peas ,total yield for every season and total yield of 3 seasons. Also, there has been positive significant difference between the different treatments on biomass-C for every season and also for total biomass-C of 3 seasons. Averaged seasonal biomass-C values have ranged from 3.17 to 3.3 and amounted 9.63 ton C fed ${ }^{-}$ ${ }^{1}$ season ${ }^{-1}$ for 3 seasons. Averaged biomass-C values have ranged from 3.79 to 3.99 ton C fed ${ }^{-1}$ season ${ }^{-1}$ for intercrops pattern and ranged from 2.55 to 2.7 ton $\mathrm{C}^{\text {fed }}{ }^{-1}$ season $^{-1}$ for sole crops pattern. Also, biomass-C relative increase for

Khadra A. Abbadyet al.

intercrops to sole crops values have ranged from 44.45 to 52.99% and amounted 49.38% for 3 seasons. The biomass-C values have been influenced by N-fertilizer types where they have ranged from 3.06 to 3.23 ton Cfed ${ }_{1}^{1}$ season $^{-1}$ - for urea and from 3.28 to 3.49 ton Cfed^{-1} season ${ }^{-1}$ for UF and amounted 9.23 for former and 9.97 ton C fed ${ }^{-}$ ${ }^{1}$ season $^{-1}$ for latter. Preponderancy of UF as slow release fertilizer has been realized through calculation of biomassC relative increase for UF to urea which has ranged seasonally from 4.50 to 12.2% and amounted 8.05% for 3 seasons. The trend of these findings has been seen in previous pattern (table 3). However, crop yield of this intercrops pattern (table 4)has been lower than those in previous mentioned above which may due to the variation in crops type, in particular, the lower yield for peas which may be attributed to severe competition with wheat for light, the same findings reported by Singh and Ajeigbe(2007).

First season of first year, summer 2010

Fig.(2): Soil temperature (a), soil moisture (b) and soil emittedCO Cl_{2} (c) at different treatments during first year of 3 successive years.

Weeks \quad First season of second year summer 2011 We	
Weeks Second season of se	Weeks year, winter 2011-2012

Fig.(3): S oil temperature (a), soil moisture (b) and soil emitted CO_{2} (c) at different treatments during second year of 3 successive years.

Khadra A. Abbadyet al.

Crop carbon sequestration

To assess the management practice pursued in this study as a tool to sequester absorbed- carbon from atmosphere in crop biomass, the equation reported by Baldocchi and Valentini (2012) has been applied:
$N E P=G P P-$ Reco
where: NEP is net ecosystem productivity and is defined as the difference between gross primary productivity (GPP) or plant biomass carbon representing the carbon dioxide amount that is assimilated by plants through photosynthesis and ecosystem respiration ($R_{\text {eco }}$) or, here, soil emitted carbon.

Tables (5 and 6) contain all the outputs of this experiment in carbon form; the former will have the results of sunflower/cowpea intercrops and the latter have wheat / peas intercrops. The results given in Table 5 represent the total carbon yield of different intercropping configurations, total (cumulative) emitted $\mathrm{CO}_{2} \&$ their values in carbon form, sequestered carbon for every season and its final resultant of the 3 seasons which reveal that, in all studied seasons: Firstly, the intercrops patterns $\left(\mathrm{T}_{1}\right.$ and $\left.\mathrm{T}_{2}\right)$ as a carbon values have been superior to those of sole crops patterns $\left(\mathrm{T}_{3} \mathrm{andT}_{4}\right)$ and statistically have had positive significant effect. The carbon which has been collected from atmosphere by former ranged from 15.38 to 18.78ton Cfed^{-1} and ranged from 9.38 to 13.57 ton $\mathrm{C}^{\text {fed }}{ }^{-1}$ by latter.

This effect has been expected and due to the higher obtained yield of intercrops patterns. Secondly, soil emitted CO_{2} values under intercrops patterns (T_{1} and T_{2}) have been slightly inferior to those of sole crops (T_{3} and T_{4}) where these values have ranged from2.04(1.1 $\mathrm{CO}_{2}-\mathrm{C}$ ton fed ${ }^{-1}$)to4.84 ton $\mathrm{CO}_{2} \mathrm{fed}^{-1}\left(1.31 \mathrm{CO}_{2}-\mathrm{C}_{\mathrm{fed}}{ }^{-1}\right)$ under former and from 3.91 $\left(1.05 \mathrm{CO}_{2}-\mathrm{C}\right.$ ton $\left.\mathrm{fed}^{-1}\right)$ to 5.15 ton CO_{2} fed $^{-1}\left(1.39 \mathrm{CO}_{2}-\mathrm{C}\right.$ tonfed $\left.{ }^{-1}\right)$ under latter, their final resultant of the 3 seasons ranged from3.38to3.47 $\mathrm{CO}_{2}-\mathrm{C}$ tonfed ${ }^{-1}$ for former and from 3.63 to $3.64 \mathrm{CO}_{2}-\mathrm{C}$ ton fed^{-1} for latter. Thirdly, sunflower-cowpea intercrop carbon values related to urea treatments(on average) have been inferior to those of UF treatments, such values have ranged from 12.60 to15.27ton $\mathrm{CO}_{2}-\mathrm{C}$ fed ${ }^{-1}$ for former and ranged from13.06 to 16.38 ton $\mathrm{CO}_{2}-\mathrm{C}$ fed ${ }^{-1}$ for latter. Fourthly, soil emitted CO_{2} values related to urea treatments (on average) have been superior to those of UF treatments where these values have ranged from 4.39 to 5.58tonCO ${ }_{2}$ fed $^{-1}\left(1.19\right.$ to 1.51 ton $\left.\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}\right)$ for former and from3.80 to4.32ton $\mathrm{CO}_{2} \mathrm{fed}^{-1}(1.03$ to1.17ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$) for latter. Fifthly, crop sequestered carbon values have been influenced significantly by intercropping configurations, urea and UF treatments; the data demonstrate that the averaged sequestered-C values of intercrops have seasonally ranged from14.74 to17.01ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ and their final resultant amounted 46.76 ton $\mathrm{CO}_{2}-$ Cfed $^{-1}$ for 3 seasons while such values for sole crops have seasonally ranged from 8.45 to 11.97 ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ and their final resultant amounted 29.58 ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$.Thereby, sequestered-C relative increase for intercrops to sole crops values have ranged seasonally from 42.06 to 77.75% and amounted 58.06 \% for the 3seasons.The crop sequestered carbon values belonging to UF fertilizer have ranged from12.12 to 15.21 ton CO_{2}-Cfed and amounted 39.70 ton CO_{2}-Cfed ${ }^{-1}$ for the 3 seasons. Such values for urea fertilizer have ranged from11.35to13.76ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ and amounted 36.64 tonCO 2 -Cfed ${ }^{-1}$ for the 3 seasons. On this basis, the sequestered-C relative increase for UF to urea seasonally have ranged from 6.78 to 10.51% and a mounted 8.35% for the 3 seasons

Dealing with data in table 6 as dealt with data in Table (5),it can be noticed that: firstly, there has been obvious effect for intercrops $\left(\mathrm{T}_{1}\right.$ and $\left.\mathrm{T}_{2}\right)$ on carbon collected from atmosphere more than did with sole crops $\left(\mathrm{T}_{3}\right.$ and $\left.\mathrm{T}_{4}\right)$ where such carbon values have seasonally ranged from 3.43to 4.26 tonCO ${ }_{2}-\mathrm{Cfed}^{-1}$ for former and from 0.54 to 4.59 ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ for latter. Secondly, insignificant differences between the carbons of both crops as affected by urea or UF fertilizer have been observed. Thirdly, slight and insignificant
differences have been found between soil emitted CO_{2} regarding intercrops treatments and those of sole crops ones. Fourthly, soil emitted CO_{2} values of urea treatments (on average) have been more than those of UF fertilizer. Fifthly, averaged crop sequestered carbon referred to intercrops patterns have seasonally ranged from 2.45 to2.97ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ and that of sole crops ranged from 2.43 to 3.19 ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ and the carbon final resultant of 3 seasons have amounted 8.06 soil emitted carbon, tonfed ${ }^{-1}$ ton $\mathrm{CO}_{2}-$ Cfed $^{-1}$ for former and 8.62 ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ for latter. The sequestered-C relative increase for intercrops to sole crops have ranged from -6.72 to 0.46% and amounted -6.55 for 3 seasons. the sequestered carbon related to urea and UF fertilizers, ranged from 1.7 to1.98 ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ for former and from1.95 to 2.58 ton $\mathrm{CO}_{2}-\mathrm{Cfed}^{-1}$ for latter. The final resultant has amounted 5.56 ton $\mathrm{CO}_{2}-$ Cfed $^{-1}$ for former and 6.81 ton CO_{2}-Cfed ${ }^{-1}$ for latter. The sequestered-C relative increase for UF to urea has ranged from 14.6 to 30.05% and amounted 22.45% for 3 seasons. Here, it must be pointed out to the clear difference between the magnitude of sequestered-C belonging to the two intercrops patterns which may be attributed to the nature and type of used crops.

Carbon emitted from \mathbf{N}-fertilizer manufacture

According to data reported by Lal et al., (1998) that the N -fertilizer manufacture indirectly resulted in about 0.82 $\mathrm{kg} \mathrm{CO}_{2}-\mathrm{C}$ emission per kg N produced. Such emissions have been formed as a result of combustion of used fossil fuel to manufacture. Therefore, the values of $\mathrm{CO}_{2}-\mathrm{C}$ emissions produced during manufacture N -fertilizers, calculated in ton fed $^{-1}$ for one year (2 N additives) and then, for three y ears ($6 \mathrm{~N}-$ additives), found in Table (7).They have ranged from 0.172 to 0.418 ton fed ${ }^{-1}$ for urea at one year and ranged from 0.738 to 1.26 ton fed^{-1} at three years. Such values for UF have ranged from 0.123 to 0.246 ton fed $^{-1}$ at one year and from 0.369 to 0.738 ton fed ${ }^{-1}$ for 3 years. CO_{2}-C emissions from application of urea have been greater than those of UF with nearly from 1.4 to 2 times. This effect certainly attributed to the style of use of each where the former has been added for every season while the latter has been added for every 2 seasons, because it has the ability to continue in releasing its nitrogen all long the growing season. If it is the quantities of $\mathrm{CO}_{2}-\mathrm{C}$ emitted from soil of every treatment (Table 5 and Table 6) have been added to those of fertilizers corresponding treatments ,it would be illustrated that the amounts of $\mathrm{CO}_{2}-\mathrm{C}$ released from treatments fertilized with urea have been greater than those fertilized with UF. Similar results have been obtained by Abbady et al., (2011) and Abbady et al .,(2013).
3.S oil carbon sequestration and affecting soil properties: :Because of soil organic C pool has a great potential to sequester naturally a lot amounts of atmospheric carbon, the stability of organic C in soil is a prime requirement. So in this section, the discussion of implicated SC amounts and factors controlling such stability (physicochemical properties) has been devoted.

Soil carbon sequestration

Table (8) includes the change in organic matter \% (OM\%) ,cumulative carbon $\%$ and the sequestered-carbon (SC) throughout the experiment (6 seasons) in 3 successive soil layers ($0-10,10-30$ and $30-60 \mathrm{~cm}$) as affected by different treatments. Generally, it is observed that the OM \% change has been very slow and in little quantities, this may be due to either it is natural phenomenon related to different decomposition factors or no additional organic manure has been achieved in this study. Also, it would be mentioned that the reduced-tillage practice (undisturbed soil) has been pursued which it may be led to ensure the originally found humus compounds, in addition to roots decomposition within the experimental period. OM\% change levels tend to be variable and dependent on intercrops \& sole crops patterns and also on urea \& UF fertilizer treatments as well as its values have varied with different depths

Weeks $\begin{array}{lll}\text { First season of third year, summer } 2012 & \text { Weeks }\end{array}$	
	34 0 0 0 0

Fig.(4): Soil temperature (a), soil moisture (b) and soil emitted CO_{2} (c) at different treatments during third

Khadra A. Abbady et al.

year of 3 successive years

CO_{2} emissions for first year

(a)

(b)

$$
\mathrm{CO}_{2} \text { emissions for third year }
$$

Fig.(5): Correlation between CO_{2} emissions and soil temperature and soil moisture content under dry and wet conditions at every first season (a) and every second season (b) of $\mathbf{3}$ successive years
\qquad Temperature \qquad
\qquad Moisture \qquad
(a)

\qquad $\mathrm{CO}_{2}\left(\mathrm{kgfed}^{-1}\right)$

(b)

\qquad $\mathrm{CO}_{2}\left(\mathrm{kgfed}^{-1}\right)$ \qquad
Fig.(6): Correlation between CO_{2} emissions and soil temperature and soil moisture content under different studied treatments at first season (a) and second season (b) of first year. 2010-2011

Khadra A. Abbady et al.

 $\mathrm{CO}_{2}\left(\mathrm{kgfed}^{-1}\right)$ \qquad

(b)

Fig.(7): Correlation between CO_{2} emissions and soil temperature and soil moisture content underdifferent
studied treatments at first season (a) and second season (b) of second year. 2011-2012

As for intercrop \& sole crop patterns, the data given in the same Table have represented the averaged OM\% change values of intercrops (T_{1} andT T_{2}) \& sole crops (T_{3} and T_{4}) patterns regardless of their cropstype, as represented the sum of OM\% quantities for the 3 studied layers. Averaged OM \% change values have been ranged from 0.30 to 0.31 for intercrops pattern and from 0.26 to 0.36 for sole crops, and consequently cumulative carbon \% values have ranged from
0.174 to 0.198 for former and from 0.151 to 0.206 for latter within 6 cultivation growth seasons. Also it is noticed that these quantities have almost concentrated in the surface layers. As matter of fact SC values under different treatments, they have been calculated based on an equivalent soil mass (Jun Ke Zhang et al. 2011) using the equation of : SC,tonfed ${ }^{-1}=$ fed. area $\left(m^{2}\right) \times$ layer depth $(m) \times O C \% \times B D\left(\mathrm{Mgm}^{3}\right)$

The data illustrate that SC values of intercrops pattern (sum of 3 successive layers) have been slightly superior to those of sole crops, where SC values of former have ranged from 1.111 to1.304 ton $^{-1}$ fed and ranged from 0.929 to1.352tonfed ${ }^{-1}$ for latter, the equivalent values of SCO_{2} have ranged from 4.11 to 4.826 tonfed $^{-1}$ for former and ranged from 3.438 to $5.013 \operatorname{ton}^{-1}$ fed for latter. Averaged sequestered-C of intercrops value has amounted 1.208 tonCfed $^{-1}$ and amounted 1.141ton Cfed^{-1} for sole crops . SC relative increase for intercrops to sole crops has amounted 5.828%. However, the data show inferior values for SC-calculated as a percentage of sum layered-SC in top soil for former to those of latter. This may attributed to the roots distribution nature of the cultivated crops in the study. In this respect, Makumba et al .,(2007)stated that after 10 years of continuous cultivation of
sole maize \& intercropping gliricidia-maize, SC in the soil (0200 cm , depth) of gliricidia-maize was 1.6 times more than of sole-maize. Cong WF, et al., (2015), in their 7 years field experiment, found that soil organic C content in the top 20 cm was $4 \% \pm 1 \%$ greater in intercrops than in sole crops and total root biomass in intercrops was ,on average, 23% greater than the average root biomass in sole crops. To demonstrate the roots importance for soil carbon sequestration process, Buyanovsky and Wagner (1997) concluded from their study that for many plants, as much as $30-50 \%$ of the C fixed in photosynthesis is initially translocated below-ground. Some is used for structural growth of the root system, some for autotrophic respiration, and some is lost to the surrounding soil in organic form (rhizo deposition), either sloughed during root expansion or excreted in a variety of compounds.
(a)

$\mathrm{CO}_{2}\left(\mathrm{~kg} \mathrm{fed}^{-1}\right)$
(b)

Fig. (8): Correlation between CO_{2} emissions and soil temperature and soil moisture content under different studied treatments at first season (a) and second season (b) of third year. 2012-2013

Table (3): Effect of sunflower/cowpea intercropping system and nitrogen fertilizer type on crop yield and biomass carbon (biomass-C) for different treatments during the cultivated summer seasons of 3 years (2010-2011, 20112012and 2012-2013)

Biomass-C. means the carbon absorbed from atmospheric CO_{2} through photosynthesis and stored inside the plant Biomass-C, ton fed ${ }^{-1}=$ crop, ton $\mathrm{fed}^{-1} \mathbf{x} 0.58$

Table (4): Effect of wheat / peas intercropping system and nitrogen fertilizer types on crop yield and biomass-C during the cultivated winter seasons of 3 years (2010-2011, 2011-2012 and 2012-2013)

Biomass-C. means the carbon absorbed from atmospheric CO_{2} through photosynthesis and stored inside the plant Biomass-C, ton fed ${ }^{-1}=$ crop yield, ton fed ${ }^{-1} \times 0.58$

Regarding the effect of UF \& urea fertilizer treatments, data show superiority for UF fertilizer to urea fertilizer as for averaged values of OM \% change particularly in sole crop patterns. in logical consequence, the cumulative C\% values have taken the same direction. Generally, the final averaged value of UF treatments has amounted 0.340 \% for the former and 0.199% for the latter while they have amounted 0.27% and 0.157% for the urea treatments. Data also show mostly superiority for UF to urea in ensuring and sequestering carbon
in soil where that the averaged SC values have ranged from 1.039 to1.880 ton Cfed^{-1} for UF and from 0.601 to 1.240 ton $\mathrm{C} \mathrm{fed}^{-1}$ for urea (sum SC values for 3 successive layers) .corresponding averaged values of SCO_{2} have ranged from 3.845 to 6.974 ton $\mathrm{CO}_{2} \mathrm{fed}^{-1}$ for UF and from 2.224 to 4.582 $\mathrm{CO}_{2} \mathrm{fed}^{-1}$ for urea. SC relative increase for UF to urea has amounted 44.074%. It is noticed that most SC has been concentrated in top soil of urea treatments where SC\% values ranged from 47.905 to 65.935% calculated as percentage of total SC of the three successive layers ($0-10,10-30$ and $30-60$
cm) whereas these values for UF treatments have been distributed on different depths without certain trend as shown in the Table. It may be explained the distinguished impact of UF on SC comparing to that of urea on the basis of:1- the available nitrogen referred to UF fertilizer is surly less than that of urea fertilizer due to slowness its nitrogen release.2- It is well-known that nitrogen abundance in soil solution would
result in stimulation of microorganisms propagation which promote the oxidized-decomposition of soil organic matter to obtaining energy for life. This findings is consistent with reports of SOC decline influenced by addition of conventional nitrogen fertilizers (Varvel, 1994, 2006; Pikul et al., 2001; Olson et al., 2005; Fierer et al., 2003; Mack et al., 2004).

Table(5):Sunflower /cowpea intercrops yield expressing in carbon form, emitted carbon dioxide form, emitted carbon form ,crop sequestered -carbon for every summer season and total soil emitted-carbon \& total crop sequestered-carbon for the 3 summer growth seasons in Tonfed ${ }^{-1}$

Emitted carbon=Emitted CO ${ }_{2} \times 0.27$

Crop sequestered carbon, ton fed ${ }^{-1}=$ sunflower-cowpea intercrops yield as a carbon tonfed ${ }^{-1}$ - soil emitted carbon, tonfed ${ }^{-1}$ Table (6):Wheat-peas intercrops yield expressing in carbon form, soil emitted carbon dioxide form, soil emitted carbon form ,crop sequestered- carbon for every winter season and total soil emitted-carbon \&total crop sequestered carbon for the 3 winter growth seasons in Tonfed ${ }^{-1}$

Emitted carbon = Emitted CO ${ }_{2} \times 0.27$
Crop sequestered-carbon, ton fed ${ }^{-1}=$ wheat-peas intercrops yield as a carbon, tonfed ${ }^{-1}$

Khadra A. Abbadyet al.

Table (7): \mathbf{N}-rates of sunflower/cowpea and wheat/peas configurations for 1year \& 3years, $\mathrm{CO}_{2}-\mathrm{C}$ produced during N fertilizer manufacture, $\mathrm{CO}_{2}-\mathrm{C}$ emitted from soil and total $\mathrm{CO}_{2}-\mathrm{C}$ for 3 years

Soil properties affecting carbon sequestration:

Among soil factors impacted SC are amount of soil organic matter (SOM), salinity, pH, N-fertilization, management practice and aeration. Therefore, the effects of studied different treatments on available-N, EC, pH and OM values will be here discussed. Fig.(9) shows the effect of urea and ureaform treatments on available-N, EC, pH and OM values (on average) measured at ending of every season ($1,2,3,4,5$ and 6).In general, the values of all above parameters have tended to increase with seasons progress (1to 6). Except OM, the effect of urea treatment on other parameters have been superior to that of UF, where the values of available-N, EC and pH have been slightly increased comparing to UF till the end of experiment .This effect has been expected and known for soluble nitrogen fertilizers and in harmony with the studies of Abbady et al.,(1999) and Ju et al.,(2007).The increased values of OM as affected by UF comparing to urea have been also expected and known, because the little amounts of nitrogen released from slow release fertilizer would not induce promotion of microorganisms and their enzymes ,and consequently, less breaking down for OM has been attended. Such effect has been agreed with findings of Martikainen(1989).

Fig. (10) and Fig. (11) illustrate the effect of sunflower/cowpea and wheat/peas intercropping configurations (treatments) on available-N, EC, pH and OM values, the general trend of this effect has been directed toward increasing along with seasons progress till the end of the experiment. Examination of the same figures, mostly show that T_{1} and T_{2} (intercrops) in each intercrop ping pattern have decreased the available nitrogen, EC and some extent, pH values but they have increased OM content comparing with T_{3} and T_{4} (sole crops). In this respect, similar results have been obtained by Song et al.,(2007).

The results of averaged values of available nitrogen concentration remained in soil from urea \&UF fertilizers after harvest and graphed against soil depth (Fig.12) show the general distribution of available-N for each which may be affected by permeability, porosity, irrigation and cropping systems ...etc. Also, they reveal that regardless of the fertilizer type there is a gradual increase in nitrogen concentration from first season to six one. This increase has been higher in UF-N than that of urea-N, especially at top soil ($0-10 \mathrm{~cm}$).This means that slow release nitrogen form has had resident time much longer than that of conventional one which has fast moved down soil profile with drainage water. The concentration of UF-N has been ranged from 58 to $96 \mathrm{mg} \mathrm{kg}^{-1}$ while such concentration for urea-N has been ranged from 53to $75 \mathrm{mg} \mathrm{kg}^{-1}$, although the doses of UF-N has been added every tow growing seasons and such doses of urea-N added every one growing season. The concentration of UF-N has been decreased gradually with soil depth increase and collapsed to the half at the depth of $30-60 \mathrm{~cm}$ while the urea-N still as it is. Such behavior means that nitrogen fertilizer in slow release form has the ability to rest in top soil nearing to roots zone and vice versa in conventional nitrogen form. Here, it must be pointed out that from the ecological perspective, slow release nitrogen fertilizer may play an important role in conservation on soil profile and ground water from nitrate pollution (Alexander and Helm 2007 and Lu et al., 2011) . In addition, its role in supporting carbon sequestration process as shown in foregoing results (Table. 7 and Fig.9).

As regards soil physical properties influenced by the different treatments, Fig.(13)shows the effect of such treatments on averages of total wet stable aggregates \%. With time progress of seasons under study, overall, it is observed
that all studied treatments have increased wet stable aggregates $\%$. However there has been some of preponderancy for UF fertilizer which has pronouncedly increased such aggregates comparing. with urea as well as intercrops treatments $\left(\mathrm{T}_{1}\right.$ and $\left.\mathrm{T}_{2}\right)$ in both sunflower/cowpea \&wheat/p eas configurations which have given slightly higher values for such aggregates than those of sole crops (T_{3} and T_{4}) which may due to more magnitude of roots for former than letter, where aggregation is promoted by root growth, their excrete compounds and surrounded microorganisms. From Fig.(14), it can be observed that the effect of the different treatments on macro-aggregates \% has taken the same direction of total wet stable aggregates\% (Fig. 13) and such effect has confirmed on significance of UF and intercrops treatments which has attained the opportunity to forming the aggregates with increase the OM from season to season, where organic carbon in soil tended to associate with fine particles like clay or silt as an organo-mineral association which would reflect upon the stabilization of organic carbon and consequently carbon sequestration process. Thus, aggregates physically protect soil carbon through formation of barriers between microbes \& enzymes and its substrates (organic matter), thereby, they have controlled microbial turnover (Six et al., 2002a and b). Fig.(15) shows the effect of studied different treatments on averages of bulk density (BD) measured at the end of every season, continuous decline for BD values of all treatments whether urea \&UF or sunflower/ cowpea or wheat/peas intercrops configurations has been noticed with time passing by. It is also noticed that the decline related to UF fertilizer has been lower than that of urea as well as such lower decline has been mostly seen in both two configurations $\left(\mathrm{T}_{1}\right.$ and $\left.\mathrm{T}_{2}\right)$ of the two intercrop patterns comparing with that of sole crops in each. This results have been expected, particularly, if it is retrieved the previous results of OM (Fig. 9,10 and 11) wet stable aggregates (Fig. 13) and macro-aggregates \%(Fig.14) as influenced by the different treatments and agreed with the study of Hulugalle and Ezumah(1991). The trend of different treatments effect on total porosity (Fig.16) has been the same as the trend of their effects on wet stable aggregates\% (Fig. 13) and macro-aggregates \% (Fig.14).such picture has been expected because the magnitude of porosity is truly reflection for aggregation process as reported by Regelink et al., (2015).

The correlation between OM \% and water stable macro aggregates \% has been generally low (Fig. 17) . In first, second and third seasons there have been no change in R^{2} values. Then, they have been somewhat increased until the sixth season. Although marked gradual increase for macro aggregates initiated from first season till the sixth one as affected by different treatments (Fig.14), it seems that the correlation relationship may be negatively affected by distribution of OM within the soil matrix and its interaction with micro aggregates or the lack of OM, where its building up is very difficult and no OM source has been added in this experiment or the time necessitated to cement micro aggregates is not enough. Moreover, that macro aggregates may be controlled by soil management .macro aggregates initiated from first season till the sixth one as affected by different treatments (Fig.14), it seems that the correlation relationship may be negatively affected by distribution of OM within the soil matrix and its interaction with micro aggregates or the lack of OM, where its building up is very difficult and no OM source has been added in this experiment or the time necessitated to cement micro aggregates is not enough. Moreover, that macro aggregates may be controlled by soil management.

Fig. (9): Effect of urea and ureaform on available-N, EC, pH and OM

Fig. (10): Effect of sunflower/cowpea intercropping configurations on available-N, EC,pH and OM

Seasons
Fig. (11): Effect of wheat/peas intercrops configurations on available-N, EC, pH and OM
Nitrogen concentration (mg/ kg)

Fig. (12): Changes in available nitrogen levels of residual urea(U) and UF fertilizers estimated after harvest, down the soil profile ($0-60 \mathrm{~cm}$) for the six successive seasons

Fig. (13): Effect of urea \& UF fertilizers, sunflower/cowpea (a) and wheat/peas (b) intercrops configurations on averages of total wet stable aggregates $\%$.

Fig. (14): Effect of urea \&UF, sunflower/ cowpea (a) and wheat/peas (b) intercrops configurations on averages of macro aggregates

Seasons
Fig.(15):Effect of urea\& UF, sunflower/ cowpea(a) and wheat/peas (b) intercrops configurations on averages of BD

Fig.(16):Effect of urea \&UF, sunflower/ cowpea(a) and wheat/peas (b) intercrops configurations on averages of TP\%

\qquad Macro aggregates \% \qquad

Fig. (17): Correlation between macro aggregates \% and OM \% at every season of the six seasons

Khadra A. Abbady et al.

Table (8): Changes in OM \%, cumulative C \% and sequestered-carbon (SC) \&its equivalent $\mathrm{CO}_{2}\left(\mathrm{SCO}_{2}\right)$ at the end of the experiment (6 seasons) as affected by different treatments

intercrops to sole crops
5.83

Change in OM\% = OM 6 \%- OM ${ }_{1}$ \%
OM_{6} is OM analysis after the end of growing season 6
OM_{1} is $O M$ analysis after the end of growing season 1
cumulative $\mathrm{C} \%=\left(\mathrm{OM}_{6} \%-\mathrm{OM}_{1} \%\right) \times 0.58$
SC, tonfed ${ }^{-1}=$ fed. area (m^{2}) x layer depth (m) x OC \% x BD ($\mathrm{Mg} / \mathrm{m}^{3}$) CO $\mathbf{C l}_{2}=\mathrm{C} \times 3.7$

In conclusion, it seems that the intercropping system and slow release N -fertilizer could positively contribute to increase crop yield and other multiple agro-ecosystem services; the interaction among the different studied elements of this experiment has facilitated opportunity for the soil chemical, physical and biological processes to achieve their important role in improving soil properties and consequently, resulted in these positive promised implications and finely indeed ensured and sequestered organic carbon. Thus, agriculture soil could be useful instrumental in formulating efficient strategies related to carbon sequestration and reduction of CO_{2} emissions.

REFERENCES

Abd El- Azeem, A. Nafisa; Sh. Abdo. Marwa; M. Madkour and I. El-Wardany(2014). Physiological and Histological Responses of Broiler Chicks to in ovo Injection with Folic Acid or L-carnitine during Embryogenesis. Glob. Veterin., 13 (4) : 544-551.
Abdel-Fattah, S. A.; E. F. El-Daly and N. G. M. Ali (2014). Growth performance, immune response, serum metabolites an digestive enzyme activities of japanese quail fed supplemental L-carnitine. Global Ceterinaria, 12 (12):277-286.

Abdel-Fattah, S. A. and M. I. Shourrap (2013). Growth muscular proliferation and metabolic hormones expression in broiler chicks as affected by folic acid administration and embryonic thermal conditioning. Egypt. J. Nutri. And feeds. 16 (2): 195-202.
Abdel-Fattah, S. A. and M. I. Shourrap (2012). Physiological effects of in ovo L carnitine and embryonic thermal conditioning on pre and posthatch development of broiler chicks. $3^{\text {rd }}$ Mediterranean Poultry Summit and $6^{\text {th }}$ international Poultry Conference, 26-29 Mar. 2012, Alex., Egypt.
Adabi, G. S. H.; R. G. Cooper; N. Ceylan and M. Corduk (2011). L-carnitine and its functional effects in poultry nutrition. World's poult. Sci. J., 67: 277-296.

Al-Daraji, H. J.; A. A. Al-Mashadani; W. E. AlHassani and H. A. Mirza (2012). Effect of in ovo injection with L-arginine on productive and physiological traits of Japanese quail. S. Afr. J. Sci. Vol. 42 n2 pretoria Jan.
Allain, C. C., L. S. Poon; C.S. Chan and W. Richmond (1974). Enzymatic determination of total serum cholesterol. Clin. Chem., 20 (4) : 470-5.

Al-Murrani, W. K. (1978). Maternal effects on embryonic and postembryonic growth in poultry. Br. Poult. Sci. 19: 277-281.
Arslan, C. (2006). L-carnitine and its use as a feed additive in poultry feeding: A Review. Revue Méd. Vét., 157(3): 134-142.
Arslan, C.; M. Citil and M. Saatc (2003). Effects of L-carnitine administration on growth performance, carcass traits, blood serum parameters and abdominal fatty acid composition of ducks. Arch. Anim. Nutr.(57): 381-388.
Borum, P.R.(1983). Carnitine. Annu. Rev. Nutr. (3): 233-259.
Britton, K. E; V. C. Quinn; B. L. Brown andR. P. Edkins (1975). Astrategy for thyroid function tests. Brit. Med. J. 111 : 350-356.
Buyse, J.; G.P. Janssens and E. Decuypere (2001). The effect of dietary L-carnitine supplementation on the perfprmance, organ weights and circulating hormone and metabolite concentration of broiler chickens reared under a normal or low temperature schedule. Br. Poult. Sci.(42):230-241.
Chiodi P. B. Ciani ; S. Kentroti; F. Maccari; A. Vernadakis; L. Angelucci and M.T. Ramacci (1994). Carnitine and derivatives in the central nervous system of chick embryo. Int. J. Biochem., 26: 711-720.
Dooley, M., E.D. Peebles, W. Zhai, L. Mejia, C.D. Zumwalt and A. Corzo, (2011). Effects of Lcarnitine via in ovo injection with or without L-carnitine feed supplementation on broiler hatchability and posthatch performance. J. Applied Poult. Res., 20: 491-497.
Doumas, B. T.; W. A.Watson and H. G. Biggs (1971). Albumin standerds and measurement of albumin with bromocresol green. Clin. Chim. Acta. (31): 87-96.
Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics, 1:1-42.
Fassati, P. and L. Prencipe (1982). Serum triglycerides determination colorimetrically with an enzyme that produces hydrogen peroxide.Clin. chem.(28). 2077.
Feed Composition Tables for Animals and Poultry Feed stuff Used in Egypt (2001). Technical Bulletin No., 1, Central Lab. For Food and feeds (CLFF) Ministry of agric. Res. Cent. Egypt.
Foye, O. T. , Z. Uni, and P. R. Ferket (2006). Effect of in ovo feeding egg white protein, beta-hydroxy-beta-methylbutyrate, and carbohydrates on glycogen status and neonatal growth of turkeys. Poult. Sci.(85):1185-1192.

Friedewald, W. T. (1972). Estimation of the concentration of low density lipoprotein cholesterol in plasma without use of the preparated ultra centrifuge. Clin. Chem. V. (14): 449-452.

Gornal, A. G.; C. J. Bardawill and M. M. David (1949). Determination of serum proteins by means of the biuret reaction. J. Biol.chem.66177:751.
Keralapurath, M.M.; A. Corzo; R. Pulikanti; W. Zhai and E. D. Peebles (2010). Effects of in ovo injection of L-carnitine on hatchability and subsequent broiler perfprmance and slaughter yield. Poult. Sci., 89 : 1497-1501.

Li, B. C., Y. I. Zhang; X. U. Chen; Q. Q. Shi; Z. T. Gao and G. H. chen (2011). Directional differentiation of chicken embryonic stem cells into osteoblasts, neuron-like cells and adipocyles. AFr. J. Biotechnol., 10: 77727779.

Lopez-Virella, MF; P Stone; S Ellis and J.A. Colwell (1977). Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem.(23):882-884.
Mast, J.; J. Buyse and B. M. Goddeeris (2000). Dietary L-carnitine supplementation increases antigen-specific immunoglobulin G production in broiler chickens. Br. J. Nutr., 83: 161-166.
Mihara, M. and M. Uohiyama (1978). Determenation of malondialdehyde precursors in tissues by thiobarbituric acid test. Anal. Biochem. 86 : 271-278.
North, M. O., (1984). Commercial Chicken Production Manual. $3^{\text {rd }}$ Ed. The AVI publishing Co. Inc. West-port, Connecticut, U.S.A.

Ohta, Y; M.T. Kidd and T. Ishibashi (2001). Embryo growth and amino acid concentration profiles of broiler breeder eggs, embryos, and chicks after in ovo administration of amino acids. Poult. Sci. (80):1430-1436.
Ohta, Y; N. Tsushima; K. Koide ; M.T. Kidd and T. Ishibashi1(999). Effect of amino acid injection in broiler breeder eggs on embryonic growth and hatchability of chicks. Poult. Sci.(78):1493-1498.
Rabie, M.H.; F.S.A. Ismaail and A.A.S. Ahmed(2015). Effect of in ovo injection in broiler breeders and post-hatch performance. Asian j. of Anim.and Veter. Advances., 10 (12): 875884.

Rebouche, C.J. (1992). Carnitine function and requirements during the life cycle. FASEB J., 6: 3379-3386.
Sarica, S.; M. Corduk and K. Kilinc (2005). The effect of dietary L-carnitine supplementation on growth performance, carcass traits and consumption of edible meat in Japanese quail (Coturnix coturnix japonica). J. Appl. Poult. Res., 14: 709-715.
SAS Institute. (2004). SAS User’s Guide: Statistics. Edition 9.1 . SAS Institute Inc., Cary, NC.
Shafey, T.M.; H.A. Al-Batshan; A.N. Al-Owaimer ana K.A. Ai-Samawei (2010). Effects of in ovo administration of L-carnitine on hatchability performance,glycogen status and insulin-like growth factor-1 of broiler chickens. Brit. Poult. Sci., 51(1): 122-131.
Salmanzadeh, M.; Y. Ebrahimnezhad and H.A. Shahryar (2013). The effect of in ovo injection of L-carnitine on hatching traits, growth perfprmance, and carcass chraracteristics of turkey poults. Bull. Env. Pharmacol. Life. Sci., vol 2(11): 125-128.
Surai, P. F. (1999). Tissue-specific changes in the activities of antioxidant enzymes during the development of the chicken embryo. Brit. Poult. Sci., 40: 397-405.
Uni, Z.; P. R. Ferket; E. Tako and O. Kedar (2005). In ovo feeding improves energy status of lateterm chicken embryo. Poult. Sci., 84: 764-770.
Vaz, F. M. and R. J. Wanders (2002). Carnitine biosynthesis in mammals. Biochem. J. 361: 417-429.

Xu, Z. R.; M.Q. Wang; H.X.Mao; X.A. Zhan and C.H. Hu (2003). Effect of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poult. Sci., 82(3) 408-413.

Zhai, W., S. Neuman, M.A. Latour and P.Y. Hester(2008b).The Effect of in ovo injection of L-carnitine on hatchability of white leghorns. Poult. Sci., 87(3): 569-572.

*خضرة أنور عبادى ، *انشر اح ابر اهيم محمد المعاز، ، هدى محمد رجائى محمود أحمد و** عبد الحفيظ احمد زهرى * معهـ بحوث الأراضى و المياه و البيئة * * معهر بحوث المحاصيل الحقلية

 خط،، عباد شمس منفرد و لوبيا علف منفرد. النموذج الثانى (النتاخل المحصولى النانى) كـان قــح/ بسـلة ورتب كـالآتى:

 تصميم القطع المنشقة وكانت معاملات النتاخل المحصولى هـى القطع الرئيسية ومعـاملات الأسمدة هـى القطع الثققية. بالإضـافة إلـى ذلك الحقت معـالملتين
 الحجرة الثابتة وكان يققر بالتفاعل مـع هيرروكسيد الصـوديم ثم بالتعادل الرجعى باستخدام حمض الهيدروكلوريك.فى تلك الاثنـاء سـجلت درجـات الحرارة

 الشتاءءمعاملات المحاصيل المتداخلة وسماد اليوريافورم(بطئ الذوبان) أسمهما فى الحصـول علىى أقل مستوى مـن الإنبعاثـات مقارنـة بمعـاملات المحاصيل

 و 7 ६. • \% للتداخل المحصـولى قــح/ بسـلة.كما تراوحت الزيـادة النسبية لليوريـافورم بالنسبة لليوريـا فـى حفظ الكربـون فـى الكتلـة المحصـولية تحـت

 التحسن المنتر ج اللـلحوظف فـى محتوى المـادة العضـويه و الأمـلاح الكليـة والأس الأيدروجيني و النيتروجين الميسر و التجمعـات الثابتـة و المسـامية إنعكس ايجابيا على حفظ الكربون فى التربة.

